COMUNE DI CAVE Città Metropolitana di ROMA Capitale

P.N.S.S. - 4° e 5° PROGRAMMA ANNUALE art. 32 L. 144/99

MESSA IN SICUREZZA VIA DELLO SPECIANO ATTRAVERSO INTERVENTI DI RIQUALIFICAZIONE DEL SISTEMA VIARIO

PROGETTO ESECUTIVO I LOTTO

		DDU	MA STESURA				
NOME FILE:	DATA		TESURA N.		DISEGN.	CONTR.	APPROV.
SOSTITUISCE ELAB. N SOSTITUITO DALL'ELA	N° DEL		TESSICA N.		SCALA:	00111111	
PROGETTISTA E D.L. Ing. Catia Bianchi							
RELAZIONE	DI CALCO	LO H MASSIMA			А	LL_S	_04
COMMITTENTE	COMMITTENTE PROGETTAZIONE E OPERE DI INGEGNERIA						
COMUNE DI CAVE							

Il presente progetto rimane di esclusiva proprietà del progettista a cui restano i diritti d'autore conformemente alle vigenti leggi. E' vietata la riproduzione e divulgazione senza autorizzazione scritta del progettista che si riverva di perseguire legalmente i trasgressori.

COMUNE DI CAVE PROVINCIA DI ROMA

PROGETTO:
MESSA IN SICUREZZA VIA DELLO SPECIANO
OGGETTO:
RELAZIONE DI CALCOLO HMAX
COMMITTENTE:
COMUNE DI CAVE
IMPRESA COSTRUTTRICE:
PROGETTISTA DELLE STRUTTURE:
ING. CATIA BIANCHI

RELAZIONE DI CALCOLO

Normative di riferimento:

NTC 2008 - Norme tecniche per le costruzioni - D.M. 14 Gennaio 2008.

CIRCOLARE 2 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle 'Nuove norme tecniche per le costruzioni' di cui al decreto ministeriale 14 gennaio 2008. (GU n. 47 del 26-2-2009 - Suppl. Ordinario n.27).

Calcolo della spinta attiva con Coulomb

Il calcolo della spinta attiva con il metodo di *Coulomb* è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura nell'ipotesi di parete ruvida.

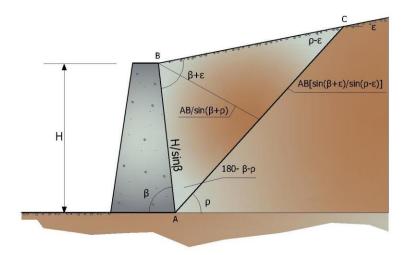
Per terreno omogeneo ed asciutto il diagramma delle pressioni si presenta lineare con distribuzione:

$$P_t = K_a \cdot \gamma_t \cdot z$$

La spinta S_t è applicata ad 1/3 H di valore

$$\mathbf{S}_{t} = \frac{1}{2} \mathbf{\gamma}_{t} \cdot \mathbf{H}^{2} \cdot \mathbf{K}_{a}$$

Avendo indicato con:


$$K_{a} = \frac{\sin^{2}(\beta - \phi)}{\sin^{2}\beta \cdot \sin(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi - \epsilon)}{\sin(\beta + \delta) \cdot \sin(\beta - \epsilon)}}\right]^{2}}$$

Valori limite di Ka:

 $\delta < (\beta - \phi - \epsilon)$ secondo Muller-Breslau

γ_t Peso unità di volume del terreno;

- β Inclinazione della parete interna rispetto al piano orizzontale passante per il piede;
- φ Angolo di resistenza al taglio del terreno;
- δ Angolo di attrito terra-muro;
- ε Inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria;
- H Altezza della parete.

Cuneo di rottura usato per la derivazione dell'equazione di Coulomb relativa alla pressione attiva.

Calcolo della spinta attiva con Rankine

Se $\epsilon = \delta = 0$ e $\beta = 90^\circ$ (muro con parete verticale liscia e terrapieno con superficie orizzontale) la spinta S_t si semplifica nella forma:

$$S_{t} = \frac{\gamma \cdot H^{2}}{2} \frac{\left(1 - \sin\phi\right)}{\left(1 + \sin\phi\right)} = \frac{\gamma \cdot H^{2}}{2} \tan^{2}\left(45 - \frac{\phi}{2}\right)$$

che coincide con l'equazione di Rankine per il calcolo della spinta attiva del terreno con terrapieno orizzontale.

In effetti Rankine adottò essenzialmente le stesse ipotesi fatte da Coulomb, ad eccezione del fatto che trascurò l'attrito terramuro e la presenza di coesione. Nella sua formulazione generale l'espressione di K_a di Rankine si presenta come segue:

$$K_{a} = cos\epsilon \frac{cos\epsilon - \sqrt{cos^{2}\epsilon - cos^{2}\phi}}{cos\epsilon + \sqrt{cos^{2}\epsilon - cos^{2}\phi}}$$

Calcolo della spinta attiva con Mononobe & Okabe

Il calcolo della spinta attiva con il metodo di *Mononobe & Okabe* riguarda la valutazione della spinta in condizioni sismiche con il metodo pseudo-statico. Esso è basato sullo studio dell'equilibrio limite globale del sistema formato dal muro e dal prisma di terreno omogeneo retrostante l'opera e coinvolto nella rottura in una configurazione fittizia di calcolo nella quale l'angolo ε , di inclinazione del piano campagna rispetto al piano orizzontale, e l'angolo β , di inclinazione della parete interna rispetto al piano orizzontale passante per il piede, vengono aumentati di una quantità ϑ tale che:

$$\tan \theta = \left(\frac{k_h}{1 \pm k_h}\right)$$

con k_h coefficiente sismico orizzontale e k_V verticale.

Calcolo coefficienti sismici

Le NTC 2008 calcolano i coefficienti k_{h} e k_{v} in dipendenza di vari fattori:

$$k_h = \beta_m \cdot \left(\frac{a_{max}}{g}\right); k_v = \pm 0.5 \cdot k_h$$

 β_m coefficiente di riduzione dell'accelerazione massima attesa al sito; per i muri che non siano in grado di subire spostamenti relativi rispetto al terreno il coefficiente β_m assume valore unitario. Per i muri liberi di traslare o ruotare intorno al piede, si può assumere che l'incremento di spinta dovuto al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si assume che tale incremento sia applicato a metà altezza del muro.

a_{max} Accelerazione orizzontale massima attesa al sito;

g Accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$\mathbf{a}_{\text{max}} = \mathbf{S} \cdot \mathbf{a}_{\text{g}} = \mathbf{S}_{\text{S}} \cdot \mathbf{S}_{\text{T}} \cdot \mathbf{a}_{\text{g}}$$

- S coefficiente comprendente l'effetto di amplificazione stratigrafica S_S e di amplificazione topografica S_T.
- ${\bf a_g}$ accelerazione orizzontale massima attesa su sito di riferimento rigido.

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_{R} = -\frac{V_{R}}{\ln(1 - PVR)}$$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Per l'applicazione dell'**Eurocodice 8** (progettazione geotecnica in campo sismico) il coefficiente sismico orizzontale viene così definito:

$$k_{h} = \frac{a_{gR} \cdot \gamma_{I} \cdot S}{g}$$

- agR Accelerazione di picco di riferimento su suolo rigido affiorante;
- γ_I Fattore di importanza;
- S Soil factor e dipende dal tipo di terreno (da A ad E);

 $a_g = a_g R \gamma I$ è la "design ground acceleration on type A ground".

Il coefficiente sismico verticale k_V è definito in funzione di k_h , e vale:

$$k_v = \pm 0.5 \cdot k_h$$

Effetto dovuto alla coesione

La coesione induce delle pressioni negative costanti pari a:

$$P_{c} = -2 \cdot c \cdot \sqrt{K_{a}}$$

Non essendo possibile stabilire a priori quale sia il decremento indotto nella spinta per effetto della coesione, è stata calcolata un'altezza critica Z_C come segue:

$$Z_{c} = \frac{2 \cdot c}{\gamma} \cdot \frac{1}{\sqrt{K_{A}}} - \frac{Q \cdot \frac{\sin\beta}{\sin(\beta + \epsilon)}}{\gamma}$$

Dove:

Q =Carico agente sul terrapieno.

Se $Z_{\mathbb{C}} < 0$ è possibile sovrapporre direttamente gli effetti, con decremento pari a:

$$S_c = P_c \cdot H$$

con punto di applicazione pari a H/2.

Carico uniforme sul terrapieno

Un carico Q, uniformemente distribuito sul piano campagna induce delle pressioni costanti pari a:

$$P_{q} = K_{a} \cdot Q \cdot \frac{\sin\beta}{\sin(\beta + \epsilon)}$$

Per integrazione, una spinta pari a Sq:

$$S_{q} = K_{a} \cdot Q \cdot H \frac{\sin \beta}{\sin (\beta + \epsilon)}$$

 $Con\ punto\ di\ applicazione\ ad\ H/2,\ avendo\ indicato\ con\ K_a\ \ il\ coefficiente\ di\ spinta\ attiva\ secondo\ \textit{Muller-Breslau}.$

Spinta attiva in condizioni sismiche

In presenza di sisma la forza di calcolo esercitata dal terrapieno sul muro è data da:

$$E_{d} = \frac{1}{2} \gamma \cdot (1 \pm k_{v}) \cdot KH^{2} + E_{ws} + E_{wd}$$

Dove:

H Altezza muro;

k_v Coefficiente sismico verticale;

γ Peso per unità di volume del terreno;

K Coefficienti di spinta attiva totale (statico + dinamico);

E_{WS} Spinta idrostatica dell'acqua;

 E_{wd} Spinta idrodinamica.

Per terreni impermeabili la spinta idrodinamica $E_{wd} = 0$, ma viene effettuata una correzione sulla valutazione dell'angolo ϑ della formula di Mononobe & Okabe così come di seguito:

$$tg \mathcal{G} = \frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 \mp k_{v}}$$

Nei terreni ad elevata permeabilità in condizioni dinamiche continua a valere la correzione di cui sopra, ma la spinta idrodinamica assume la seguente espressione:

$$E_{wd} = \frac{7}{12} k_h \gamma_w H'^2$$

Con H' altezza del livello di falda misurato a partire dalla base del muro.

Spinta idrostatica

La falda con superficie distante H_W dalla base del muro induce delle pressioni idrostatiche normali alla parete che, alla profondità z, sono espresse come segue:

$$P_{w}(z) = \gamma_{w} \cdot z$$

Con risultante pari a:

$$S_{w} = \frac{1}{2} \gamma_{w} \cdot H^{2}$$

La spinta del terreno immerso si ottiene sostituendo γ_t con γ'_t ($\gamma'_t = \gamma_{saturo} - \gamma_w$), peso efficace del materiale immerso in acqua.

Resistenza passiva

Per terreno omogeneo il diagramma delle pressioni risulta lineare del tipo:

$$P_{t} = K_{p} \cdot \gamma_{t} \cdot z$$

per integrazione si ottiene la spinta passiva:

$$\mathbf{S}_{p} = \frac{1}{2} \cdot \boldsymbol{\gamma}_{t} \cdot \mathbf{H}^{2} \cdot \mathbf{K}_{p}$$

Avendo indicato con:

$$K_{_{p}} = \frac{\sin^{2}(\phi + \beta)}{\sin^{2}\beta \cdot \sin(\beta - \delta) \cdot \left[1 - \sqrt{\frac{\sin(\delta + \phi) \cdot \sin(\phi + \epsilon)}{\sin(\beta - \delta) \cdot \sin(\beta - \epsilon)}}\right]^{2}}$$

(Muller-Breslau) con valori limiti di δ pari a:

$$\delta < \beta - \phi - \epsilon$$

L'espressione di K_p secondo la formulazione di Rankine assume la seguente forma:

$$K_{p} = \frac{\cos\epsilon + \sqrt{\cos^{2}\epsilon - \cos^{2}\phi}}{\cos\epsilon - \sqrt{\cos^{2}\epsilon - \cos^{2}\phi}}$$

Carico limite di fondazioni superficiali su terreni

VESIC - Analisi a breve termine

Affinché la fondazione di un muro possa resistere il carico di progetto con sicurezza nei riguardi della rottura generale deve essere soddisfatta la seguente disuguaglianza:

$$V_d \leq R_d$$

Dove V_d è il carico di progetto, normale alla base della fondazione, comprendente anche il peso del muro; mentre R_d è il carico limite di progetto della fondazione nei confronti di carichi normali, tenendo conto anche dell'effetto di carichi inclinati o eccentrici.

Nella valutazione analitica del carico limite di progetto R_d si devono considerare le situazioni a breve e a lungo termine nei terreni a grana fine. Il carico limite di progetto in condizioni non drenate si calcola come:

$$\frac{R}{A'} \le (2 + \pi) \cdot c_u \cdot s_c \cdot i_c \cdot d_c + q$$

Dove:

A' = B'L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c_u Coesione non drenata;

q Pressione litostatica totale sul piano di posa;

s_c Fattore di forma;

$$s_c = 0.2 \cdot \left(\frac{B'}{L'}\right)$$
 per fondazioni rettangolari, il valore di s_c viene assunto pari ad 1 per fondazioni nastriformi

d_c Fattore di profondità;

$$d_c = 0.4 \cdot K \text{ con } K = \frac{D}{B} \text{ se } \frac{D}{B} \le 1 \text{ altrimenti } K = \arctan \frac{D}{B}$$

i_c Fattore correttivo per l'inclinazione del carico dovuta ad un carico H;

$$i_c = 1 - \frac{2H}{A_f \cdot c_a \cdot N_c}$$

Af Area efficace della fondazione;

ca Aderenza alla base, pari alla coesione o ad una sua frazione.

VESIC - Analisi a lungo termine

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$\frac{R}{A'} \le c' \cdot N_c \cdot s_c \cdot i_c \cdot d_c + q' \cdot N_q \cdot s_q \cdot i_q \cdot d_q + 0.5 \cdot \gamma' \cdot B' \cdot N_\gamma \cdot s_\gamma \cdot i_\gamma \cdot d_\gamma$$

Dove:

$$\begin{split} N_{\rm q} &= e^{\pi t a n \phi'} tan^2 \bigg(45 + \frac{\phi'}{2} \bigg) \\ N_{\rm c} &= \bigg(N_{\rm q} - 1 \bigg) \cdot \cot \phi' \\ N_{\gamma} &= 2 \cdot \bigg(N_{\rm q} + 1 \bigg) \cdot \tan \phi' \end{split}$$

Fattori di forma

$$s_q = 1 + \left(\frac{B'}{L'}\right) \cdot \tan \varphi'$$

per forma rettangolare

$$s_{\gamma} = 1 - 0.4 \cdot \left(\frac{B'}{L'}\right)$$

per forma rettangolare

$$s_c = 1 + \frac{N_q}{N_c} \cdot \frac{B'}{L'}$$

per forma rettangolare, quadrata o circolare

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$\begin{split} &i_{q} = \left(1 - \frac{H}{V + A_{f} \cdot c_{a} \cot \varphi'}\right)^{m} \\ &i_{\gamma} = \left(1 - \frac{H}{V + A_{f} \cdot c_{a} \cot \varphi'}\right)^{m+1} \\ &i_{c} = i_{q} - \frac{1 - i_{q}}{N_{c} \cdot \tan \varphi'} \\ &m = \frac{2 + \frac{B'}{L'}}{1 + \frac{B'}{L'}} \end{split}$$

Fattori di profondità

$$d_{c} = 1 + 0.4K$$

$$d_q = 1 + 2\tan\varphi \cdot (1 - \sin\varphi) \cdot K$$

$$con \ K = \frac{D}{B} se \ \frac{D}{B} \le 1 \ altrimenti \ K = arctan \ \frac{D}{B}$$

$$d_{\nu} = 1$$

HANSEN - Analisi a breve termine

$$\frac{R}{A'} \le (2 + \pi) \cdot c_u (1 + s_c + d_c - i_c) + q$$

Dove:

A' = B' L' area della fondazione efficace di progetto, intesa, in caso di carico eccentrico, come l'area ridotta al cui centro viene applicata la risultante del carico.

c_u Coesione non drenata;

q Pressione litostatica totale sul piano di posa;

 s_c Fattore di forma, $s_c = 0$ per fondazioni nastriformi;

d_c Fattore di profondità;

$$d_c = 0.4 \cdot K \text{ con } K = \frac{D}{B} \text{ se } \frac{D}{B} \le 1 \text{ altrimenti } K = \arctan \frac{D}{B}$$

i_c Fattore correttivo di inclinazione del carico;

$$i_c = 0.5 - 0.5 \sqrt{1 - \frac{H}{A_f c_a}}$$

Af Area efficace della fondazione;

ca Aderenza alla base, pari alla coesione o ad una sua frazione.

HANSEN- Analisi a lungo termine

Per le condizioni drenate il carico limite di progetto è calcolato come segue.

$$\frac{R}{A'} \le c' \cdot N_c \cdot s_c \cdot i_c \cdot d_c + q' \cdot N_q \cdot s_q \cdot i_q \cdot d_q + 0.5 \cdot \gamma' \cdot B' \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma} \cdot d_{\gamma}$$

Dove:

$$N_{q} = e^{\pi tan\phi'} tan^{2} \left(45 + \frac{\varphi'}{2} \right)$$

$$N_{c} = \left(N_{q} - 1 \right) \cdot \cot \varphi'$$

$$N_{\gamma} = 1.5 \cdot (N_{q} - 1) \cdot \tan \varphi'$$

Fattori di forma

$$s_q = 1 + \left(\frac{B'}{L'}\right) \cdot tan\phi'$$

per forma rettangolare

$$s_{\gamma} = 1 - 0.4 \cdot \left(\frac{B'}{L'}\right)$$

per forma rettangolare

$$s_c = 1 + \frac{N_q}{N_c} \cdot \frac{B'}{L'}$$

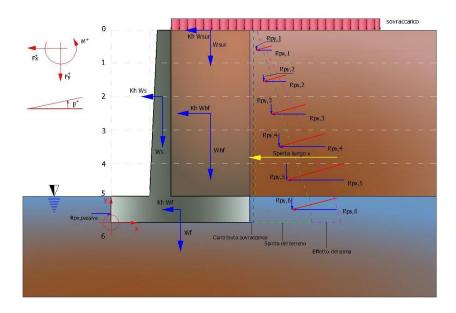
per forma rettangolare, quadrata o circolare.

$$s_c = s_q = s_{\gamma} = 1$$

per fondazione nastriforme

Fattori inclinazione risultante dovuta ad un carico orizzontale H parallelo a B'

$$\begin{split} &i_{q} = \left(1 - \frac{0.5 \cdot H}{V + A_{f} \cdot c_{a} \cot \varphi'}\right)^{3} \\ &i_{\gamma} = \left(1 - \frac{0.7 \cdot H}{V + A_{f} \cdot c_{a} \cot \varphi'}\right)^{3} \\ &i_{c} = i_{q} - \frac{1 - i_{q}}{N_{q} - 1} \end{split}$$


Fattori di profondità

$$\begin{aligned} &d_c = 1 + 0.4K \\ &d_q = 1 + 2tan\phi (1 - sin\phi) \cdot K \end{aligned}$$

$$con \ K = \frac{D}{B} se \ \frac{D}{B} \le 1 \ altrimenti \ K = arctan \ \frac{D}{B}$$

$$d_{\gamma} = 1$$

Sollecitazioni muro

Per il calcolo delle sollecitazioni il muro è stato discretizzato in n-tratti in funzione delle sezioni significative e per ogni tratto sono state calcolate le spinte del terreno (valutate secondo un piano di rottura passante per il paramento lato monte), le risultanti delle forze orizzontali e verticali e le forze inerziali.

Schema delle forze agenti su un muro e convenzioni sui segni

Calcolo delle spinte per le verifiche globali

Le spinte sono state valutate ipotizzando un piano di rottura passante per l'estradosso della mensola di fondazione lato monte, tale piano è stato discretizzato in *n-tratti*.

Convenzione segni

Forze verticali positive se dirette dall'alto verso il basso;

Forze orizzontali positive se dirette da monte verso valle;

Coppie positive se antiorarie;

Angoli positivi se antiorari.

Dati generali

Codice progetto

Descrizione
Comune di
Tecnico
Tecnico
Data
Condizioni ambientali
Zona
Lat./Long. [WGS84]

Messa in sicurezza Via dello Speciano
Cave
Tag. Catia Bianchi
21/03/2016
Cordizioni ambientali
Cave, via dello speciano
41.814297/12.941136

Normativa GEO Normativa STR Spinta NTC 2008 NTC 2008 Mononobe e Okabe [M.O. 1929]

Dati generali muro

Altezza muro	180.0 cm
	30.0 cm
Spessore testa muro	
Risega muro lato valle	0.0 cm
Risega muro lato monte	0.0 cm
Sporgenza mensola a valle	30.0 cm
Sporgenza mensola a monte	80.0 cm
Svaso mensola a valle	0.0 cm
Altezza estremità mensola a valle	30.0 cm
Altezza estremità mensola a monte	30.0 cm

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: C
Categoria topografica: T1

S.L. Stato limite	TR	ag	F0	TC*
Stato fimite	Tempo ritorno [anni]	[m/s²]	[-]	[sec]
S.L.O.	30.0	0.55	2.51	0.26
S.L.D.	50.0	0.7	2.44	0.28
S.L.V.	475.0	1.6	2.49	0.3
SIC	975.0	2.0	2.49	0.31

Coefficienti sismici orizzontali e verticali

Opera:

Opere di sostegno

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0.825	0.18	0.0151	0.0076
S.L.D.	1.05	0.18	0.0193	0.0096
S.L.V.	2.33	0.24	0.057	0.0285
S.L.C.	2.7906	0.31	0.0882	0.0441

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Conglomerati

Congrameran							
Nr.	Classe	fck,cubi	Ec	fck	fcd	fctd	fctm
	Calcestruzzo	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]
1	C20/25	25	30550.21	20	11.55	1.05	2.25
2	C25/30	30	32089.96	25	14.44	1.21	2.61
3	C28/35	35	32936.31	28	16.17	1.31	2.81
4	C40/50	51	35913.83	40	20.22	1.52	3.26

Acciai:

Nr.	Classe	Es	fyk	fyd	ftk	ftd	ep_tk	epd_ult	ß1*ß2	B1*B2 finale
	acciaio	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[Mpa]			iniziale	
1	B450C	203940	458.87	399.01	550.64	399.01	.075	.0675	1	0.5
2	B450C*	203940	458.87	399.01	550.64	458.87	.075	.0675	1	0.5
3	B450C**	203940	458.87	399.01	467.33	406.35	.012	.01	1	0.5
4	S235H	214137	244.73	212.81	367.09	212.81	0.012	0.01	1	0.5
5	S275H	214137	285.52	248.3	438.47	248.3	0.012	0.01	1	0.5
6	S355H	214137	367.09	319.17	520.05	367.09	0.012	0.01	1	0.5

Materiali impiegati realizzazione muro

C25/30 B450C

Copriferro, Elevazione 3.0 cm Copriferro, Fondazione 3.0 cm Copriferro, Dente di fondazione

3.0 cm

Stratigrafia

Ns	Spessore strato (cm)	Inclinazione dello strato. (°)	Peso unità di volume (KN/m³)	Angolo di resistenza a taglio (°)	Coesione (kPa)	Angolo di attrito terra muro (°)	Presenza di falda (Si/No)	Litologia	Descrizione
1	130	0	18.00	20	0.00	0	No		
2	180	0	18.00	22	10.00	0	No		
3	480	0	18.00	23	10.00	0	No		

_					
(`a	ric	hi	dis	trihi	niti.

Descrizione	Ascissa iniziale (cm)	Ascissa finale (cm)	Valore iniziale (kPa)	Valore finale (kPa)	Profondità (cm)
variabile	0.0	400.0	4.0	4.0	0.0

FATTORI DI COMBINAZIONE

A1+M1+R1

/ 12 / 1 / 12 / 1 / 12		
Nr.	Azioni	Fattore combinazione
1	Peso muro	1.30
2	Spinta terreno	1.00
3	Peso terreno mensola	1.30
4	Spinta falda	1.00
5	Spinta sismica in x	1.00
6	Spinta sismica in y	1.00
7	variabile	1.50

Nr.	Parametro	Coefficienti parziali
1	Tangente angolo res. taglio	
2	Coesione efficace	
3	Resistenza non drenata	
4	Peso unità volume	

Nr.	Verifica	Coefficienti resistenze
1	Carico limite	1
2	Scorrimento	1
3	Partecipazione spinta passiva	1

A2+M2+R2

Nr.	Azioni	Fattore combinazione
1	Peso muro	1.00
2	Spinta terreno	1.00
3	Peso terreno mensola	1.00
4	Spinta falda	1.00
5	Spinta sismica in x	1.00
6	Spinta sismica in y	1.00
7	variabile	1.30

Nr.	Parametro	Coefficienti parziali
1	Tangente angolo res. taglio	1.25
2	Coesione efficace	1.25
3	Resistenza non drenata	1.4
4	Peso unità volume	1

Nr.	Verifica	Coefficienti resistenze
1	Carico limite	1
2	Scorrimento	1
3	Partecipazione spinta passiva	1

EQU+M2

LQUTMZ		
Nr.	Azioni	Fattore combinazione
1	Peso muro	0.90

2	Spinta terreno	1.10
3	Peso terreno mensola	1.00
4	Spinta falda	1.00
5	Spinta sismica in x	1.00
6	Spinta sismica in y	0.00
7	variabile	1.00

Nr.	Parametro	Coefficienti parziali
1	Tangente angolo res. taglio	1.25
2	Coesione efficace	1.25
3	Resistenza non drenata	1.4
4	Peso unità volume	1

Nr.	Verifica	Coefficienti resistenze
1	Carico limite	1
2	Scorrimento	1
3	Partecipazione spinta passiva	1

A1+M1+R1 [STR]

Coefficiente sismico orizzontale Kh Coefficiente sismico verticale Kv 0.057 0.0285

CALCOLO SPINTE

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

Angolo perpendicolare al paramento lato monte (°);
Note Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	В	Note
210.0	 174.0	18.0	0.0	20.0	0.0	0.0	0.0	
174.0	138.0	18.0	0.0	20.0	0.0	0.0	0.0	
138.0	102.0	18.0	0.0	20.0	0.0	0.0	0.0	
102.0	80.0	18.0	0.0	20.0	0.0	0.0	0.0	
80.0	66.0	18.0	0.0	22.0	0.0	10.0	0.0	
66.0	30.0	18.0	0.0	22.0	0.0	10.0	0.0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.
 Ka Coefficiente di spinta attiva.
 Kd Coefficiente di spinta dinamica.
 Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
0.0	0.49	0.54	0.06	0.49	0.0	0.06	0.0
0.0	0.49	0.54	0.06	0.49	0.0	0.06	0.0
0.0	0.49	0.54	0.06	0.49	0.0	0.06	0.0
0.0	0.49	0.54	0.06	0.49	0.0	0.06	0.0
0.0	0.45	0.5	0.06	0.45	0.0	0.06	0.0
0.0	0.45	0.5	0.06	0.45	0.0	0.06	0.0

Spinte risultanti e punto di applicazione

Qi Quota inizio strato.

Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm);

Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	210.0	174.0	1.83	0.0	190.12	174.0
2	174.0	138.0	3.11	0.0	154.9	138.0
3	138.0	102.0	4.39	0.0	119.22	102.0
4	102.0	80.0	3.31	0.0	90.76	80.0
5	80.0	66.0	0.63	0.0	73.0	66.0
6	66.0	30.0	1.98	0.0	46.73	30.0

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Py Peso del muro (kN); Px Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

Quota	Px	Ру	Хр	Yp	
 174.0	0.2	3.44	45.0	 192.0	
138.0	0.39	6.89	45.0	174.0	
102.0	0.59	10.33	45.0	156.0	
80.0	0.71	12.43	45.0	145.0	
66.0	0.78	13.77	45.0	138.0	
30.0	0.98	17.21	45.0	120.0	

Sollecitazioni sul muro

Quota Origine ordinata minima del muro (cm).

Fx Forza in direzione x (kN);

Fy Forza in direzione y (kN);

M Momento (kNm);

H Altezza sezione di calcolo (cm);

Quota	Fx	Fy	M	Н	
 174.0	 2.02	 3.44	0.33	30.0	
138.0	5.33	6.89	1.62	30.0	
102.0	9.92	10.33	4.33	30.0	
80.0	13.35	12.43	6.88	30.0	
66.0	14.06	13.77	8.8	30.0	
30.0	16.24	17.21	14.23	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afv Area dei ferri lato valle.

Afm Area dei ferri lato monte. Nu Sforzo normale ultimo (kN);

Mu Momento flettente ultimo (kNm);

Vcd Resistenza a taglio conglomerato Vcd (kN);

Vwd Resistenza a taglio piegati (kN);

Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Vsdu Taglio di calcolo (kN);

Afv	Afm	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	 12Ø14 (18.47)	3.49	178.76	 S	 132.57	0.0	65.51
12Ø14 (18.47)	12Ø14 (18.47)	6.94	179.17	S	132.57	0.0	24.88
12Ø14 (18.47)	12Ø14 (18.47)	10.36	179.58	S	132.57	0.0	13.37
12Ø14 (18.47)	12Ø14 (18.47)	12.34	179.81	S	132.57	0.0	9.93
12Ø14 (18.47)	12Ø14 (18.47)	13.82	179.98	S	132.57	0.0	9.43
12Ø14 (18.47)	12Ø14 (18.47)	17.27	180.39	S	132.57	0.0	8.17

Piano di rottura passante per (xr1,yr1) = (140.0/0.0)Piano di rottura passante per (xr2,yr2) = (140.0/210.0)Centro di rotazione (xro,yro) = (0.0/0.0)

Discretizzazione terreno

Quota iniziale strato (cm); Qi Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Inclinazione dello strato. (°); Eps

Angolo di resistenza a taglio (°); Fi Delta Angolo attrito terra muro;

Coesione (kPa);

Angolo perpendicolare al paramento lato monte (°); ß Note Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	В	Note
210.0	 174.0	18.0	0.0	 20.0	20.0	0.0	0.0	
174.0	138.0	18.0	0.0	20.0	20.0	0.0	0.0	
138.0	102.0	18.0	0.0	20.0	20.0	0.0	0.0	
102.0	80.0	18.0	0.0	20.0	20.0	0.0	0.0	
80.0	66.0	18.0	0.0	22.0	22.0	10.0	0.0	
66.0	30.0	18.0	0.0	22.0	22.0	10.0	0.0	
30.0	0.0	18.0	0.0	22.0	0.0	10.0	0.0	

Coefficienti di spinta ed inclinazioni

Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Coefficiente di incremento dinamico. Dk

Componenti secondo x e y del coefficiente di spinta attiva. Kax, Kay

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
20.0	0.43	0.48	0.06	0.4	0.15	0.06	0.02
20.0	0.43	0.48	0.06	0.4	0.15	0.06	0.02
20.0	0.43	0.48	0.06	0.4	0.15	0.06	0.02
20.0	0.43	0.48	0.06	0.4	0.15	0.06	0.02
22.0	0.4	0.45	0.06	0.37	0.15	0.06	0.02
22.0	0.4	0.45	0.06	0.37	0.15	0.06	0.02
0.0	0.45	0.5	0.06	0.45	0.0	0.06	0.0

Spinte risultanti e punto di applicazione

Quota inizio strato. Ouota inizio strato. Qf

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Z(Rpx)

Ordinata punto di applicazione risultante spinta (cm); Z(Rpy)

	Qi 	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	210.0	174.0	1.54	0.56	190.17	189.9
2	174.0	138.0	2.61	0.95	154.93	154.76
3	138.0	102.0	3.69	1.34	119.24	119.12
4	102.0	80.0	2.79	1.01	90.77	90.74
5	80.0	66.0	0.57	0.22	73.0	72.96
6	66.0	30.0	1.62	0.6	47.38	47.73
7	30.0	0.0	1.71	1.64	14.19	15.0

SPINTE IN FONDAZIONE

Discretizzazione terreno

Quota iniziale strato (cm);

Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	ß	Note
30.0	0.0	18.0	180.0	 22.0	0.0	10.0	180.0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.Kp Coefficiente di resistenza passiva.

Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva.

μ	Кр	Крх	Кру	
180.0	2.1	-2.1	0.0	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	30.0	0.0	-10.41	0.0	14.18	0.0

Sollecitazioni total i

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN); M Momento (kNm);

	Fx	Fy	М
Spinta terreno	 14.53	 6.34	 6.46
Peso muro	0.98	17.21	-6.57
Peso fondazione	0.76	13.39	-9.26
Sovraccarico	0.27	4.8	-4.23
Terr. fondazione	1.48	33.7	-31.92
Spinte fondazione	-10.41	0.0	-1.48
	7.62	75.43	-46.99

Momento stabilizzante -64.48 kNm Momento ribaltante -64.48 kNm

MENSOLA A VALLE

Xprogr. Ascissa progressiva (cm);
Fx Forza in direzione x (kN);
Fy Forza in direzione y (kN);
M Momento (kNm);
H Altezza sezione (cm);

Xprogr.	Fx	Fy	М	Н
30.0	-10.41	-17.49	-2.6	30.0

Armature - Verifiche sezioni (S.L.U.)

Afi Area dei ferri inferiori.
Afs Area dei ferri superiori.
Nu Sforzo normale ultimo (kN);
Mu Momento flettente ultimo (kNm);
Vcd Resistenza a taglio conglomerato Vcd (kN);

vca Resistenza a taglio conglomerato vca (KN)

Vwd Resistenza a taglio piegati (kN);

Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Vsdu Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	10.36	179.58	 S	 132.57	0.0	7.58

MENSOLA A MONTE

Xprogr. Ascissa progressiva (cm);
Fx Forza in direzione x (kN);
Fy Forza in direzione y (kN);
M Momento (kNm);
H Altezza sezione (cm);

Xprogr.	Fx	Fy	M	Н	
60.0	1.71	7.7	-6.7	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afi Area dei ferri inferiori.
Afs Area dei ferri superiori.
Nu Sforzo normale ultimo (kN);
Mu Momento flettente ultimo (kNm);

Vcd Resistenza a taglio conglomerato Vcd (kN);

Vwd Resistenza a taglio piegati (kN);

Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Vsdu Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	1.65	 178.54	 S	132.57	0.0	17.23

A2+M2+R2 [GEO+STR]

Coefficiente sismico orizzontale Kh 0.057 Coefficiente sismico verticale Kv 0.0285

CALCOLO SPINTE

Discretizzazione terreno

Qi Quota iniziale strato (cm); Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

	Qi	Qf	Gamma	Eps	Fi	Delta	С	ß	Note
•	210.0	 174.0	18.0	0.0	16.23	0.0	0.0	0.0	
	174.0	138.0	18.0	0.0	16.23	0.0	0.0	0.0	
	138.0	102.0	18.0	0.0	16.23	0.0	0.0	0.0	
	102.0	80.0	18.0	0.0	16.23	0.0	0.0	0.0	
	80.0	66.0	18.0	0.0	17.91	0.0	8.0	0.0	

66.0 30.0 18.0 0.0 17.91 0.0 8.0 0.0

Coefficienti di spinta ed inclinazioni

Angolo di direzione della spinta. Ka Coefficiente di spinta attiva. Kd Coefficiente di spinta dinamica. Coefficiente di incremento dinamico. Dk

Kax, Kay

Componenti secondo x e y del coefficiente di spinta attiva. Componenti secondo x e y del coefficiente di incremento dinamico. Dkx, Dky

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
0.0	0.56	0.61	0.06	 0.56	0.0	0.06	0.0
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.53	0.58	0.06	0.53	0.0	0.06	0.0
0.0	0.53	0.58	0.06	0.53	0.0	0.06	0.0

Spinte risultanti e punto di applicazione

Quota inizio strato. Quota inizio strato. Qf

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Ordinata punto di applicazione risultante spinta (cm); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy)

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	210.0	174.0	1.91	0.0	189.93	174.0
2	174.0	138.0	3.37	0.0	154.83	138.0
3	138.0	102.0	4.84	0.0	119.19	102.0
4	102.0	80.0	3.68	0.0	90.76	80.0
5	80.0	66.0	0.96	0.0	72.77	66.0
6	66.0	30.0	3.43	0.0	46.92	30.0

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Ру Peso del muro (kN); Px Forza inerziale (kN);

Coordinate baricentro dei pesi (cm); Xp, Yp

Quota	Px	Py	Хр	Yp	
174.0	0.15	2.65	45.0	192.0	
138.0	0.3	5.3	45.0	174.0	
102.0	0.45	7.94	45.0	156.0	
80.0	0.55	9.56	45.0	145.0	
66.0	0.6	10.59	45.0	138.0	
30.0	0.75	13.24	45.0	120.0	

Sollecitazioni sul muro

Origine ordinata minima del muro (cm). Quota

Forza in direzione x (kN); Fx Fy Forza in direzione y (kN);

Momento (kNm); Μ

Н Altezza sezione di calcolo (cm);

Quota	Fx	Fy	M	Н	
174.0	2.06	 2.65	0.33	30.0	
138.0	5.58	5.3	1.67	30.0	
102.0	10.57	7.94	4.54	30.0	
80.0	14.34	9.56	7.27	30.0	
66.0	15.36	10.59	9.34	30.0	
30.0	18.94	13.24	15.48	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afv	Area dei ferri lato valle.
Afm	Area dei ferri lato monte.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vcd	Resistenza a taglio conglomerato Vcd (kN);
Vwd	Resistenza a taglio piegati (kN);

Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Taglio di calcolo (kN); Vsdu

Afv	Afm	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	2.57	178.65	S S S S S S S	132.57	0.0	64.39
12Ø14 (18.47)	12Ø14 (18.47)	5.33	178.98		132.57	0.0	23.75
12Ø14 (18.47)	12Ø14 (18.47)	7.88	179.28		132.57	0.0	12.54
12Ø14 (18.47)	12Ø14 (18.47)	9.62	179.49		132.57	0.0	9.24
12Ø14 (18.47)	12Ø14 (18.47)	10.61	179.6		132.57	0.0	8.63
12Ø14 (18.47)	12Ø14 (18.47)	13.32	179.93		132.57	0.0	7.0

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (140.0/0.0)Piano di rottura passante per (xr2,yr2) = (140.0/210.0)Centro di rotazione (xro,yro) = (0.0/0.0)

Discretizzazione terreno

Qi	Quota iniziale strato (cm);
Qf	Quota finale strato
Gamma	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (
Note	Nelle note viene riportata la presenza della falda

	Qi	Qf	Gamma	Eps	Fi	Delta	С	В	Note
-	210.0	 174.0	18.0	0.0	16.23	16.23	0.0	0.0	
	174.0	138.0	18.0	0.0	16.23	16.23	0.0	0.0	
	138.0	102.0	18.0	0.0	16.23	16.23	0.0	0.0	
	102.0	80.0	18.0	0.0	16.23	16.23	0.0	0.0	
	80.0	66.0	18.0	0.0	17.91	17.91	8.0	0.0	
	66.0	30.0	18.0	0.0	17.91	17.91	8.0	0.0	
	30.0	0.0	18.0	0.0	17.91	0.0	8.0	0.0	

Coefficienti di spinta ed inclinazioni

μ	Angolo di direzione della spinta.
Ka	Coefficiente di spinta attiva.
Kd	Coefficiente di spinta dinamica.
Dk	Coefficiente di incremento dinamico.
Kax, Kay	Componenti secondo x e y del coefficiente di spinta attiva.
Dkx, Dky	Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
16.23	0.49	 0.55	0.07	 0.47	0.14	0.07	0.02
16.23	0.49	0.55	0.07	0.47	0.14	0.07	0.02
16.23	0.49	0.55	0.07	0.47	0.14	0.07	0.02
16.23	0.49	0.55	0.07	0.47	0.14	0.07	0.02
17.91	0.46	0.52	0.07	0.44	0.14	0.07	0.02
17.91	0.46	0.52	0.07	0.44	0.14	0.07	0.02
0.0	0.53	0.58	0.06	0.53	0.0	0.06	0.0

Spinte risultanti e punto di applicazione

Qi	Quota i	nizio	strato.
Qf	Quota ii	nizio	strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	210.0	174.0	1.65	0.48	189.99	189.7
2	174.0	138.0	2.91	0.85	154.86	154.7
3	138.0	102.0	4.18	1.22	119.21	119.09
4	102.0	80.0	3.18	0.92	90.76	90.73
5	80.0	66.0	0.78	0.2	72.77	72.74
6	66.0	30.0	2.84	0.77	46.91	46.52
7	30.0	0.0	3.08	1.55	14 3	15.0

SPINTE IN FONDAZIONE

Discretizzazione terreno

Qi Quota iniziale strato (cm); Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

Angolo perpendicolare al paramento lato monte (°);
Note Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	В	Note
30.0	0.0	 18.0	180.0	 17.91	0.0	8.0	180.0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.Kp Coefficiente di resistenza passiva.

Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva.

μ	Кр	Kpx	Кру	
180.0	1.8	-1.8	0.0	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qt 	Rpx	Кру	z(Rpx)	z(Rpy)
1	30.0	0.0	-7.9	0.0	14.08	0.0

Sollecitazioni total i

Fx Forza in direzione x (kN); Fy Forza in direzione y (kN);

M Momento (kNm);

	Fx	Fy	М
Spinta terreno	18.62	5.99	9.46
Peso muro	0.75	13.24	-5.05

Peso fondazione	0.59	10.3	-7.12
	*		: :==
Sovraccarico	0.24	4.16	-3.66
Terr. fondazione	1.48	25.92	-24.15
Spinte fondazione	-7.9	0.0	-1.11
	13.77	59.61	-31.63

Momento stabilizzante -51.63 kNm Momento ribaltante -51.63 kNm

Verifica alla traslazione

Sommatoria forze orizzontali	21.67 kN	
Sommatoria forze verticali	59.61 kN	
Coefficiente di attrito	0.32	
Adesione	5.6 kPa	
Angolo piano di scorrimento	-360.0 °	
Forze normali al piano di scorrimento	59.61 kN	
Forze parall. al piano di scorrimento	21.67 kN	
Resistenza terreno	35.01 kN	
Coeff. sicurezza traslazione Csd	1.62	
Traslazione verificata Csd>1		

Verifica al ribaltamento

Momento stabilizzante	-51.63 kNm	
Momento stabilizzante	20.0 kNm	
Coeff. sicurezza ribaltamento Csv	2.58	
Muro verificato a ribaltamento Csv>1		

Carico limite verticale VESIC

Somma forze in direzione x (Fx)	13.77 kN
Somma forze in direzione y (Fy)	59.61 kN
Somma momenti	-31.63 kNm
Larghezza fondazione	140.0 cm
Lunghezza	7500.0 cm
Eccentricità su B	16.94 cm
Peso unità di volume	18.0 KN/m ³
Angolo di resistenza al taglio	17.91 °
Coesione	8.0 kPa
Terreno sulla fondazione	30.0 cm
Peso terreno sul piano di posa	18.0 KN/m ³
Ng	5.21
Nc	13.03
Ng	4.02
Fattori di forma	
sq	1.0
sc	1.0
sg	1.0
Inclinazione carichi	
iq	0.71
ic	0.63
ig	0.59
Fattori di profondità	
dq	1.09
dc .	1.11
dg	1.0
Carico limite verticale (Qlim)	125.22 kN
Fattore sicurezza (Csq=Qlim/Fy)	2.1

Carico limite verificato Csq>1

		terreno	

Ascissa centro collecitazione	53.06.cm

Larghezza della fondazione

140.0 cm

x = 0.0 cmx = 140.0 cm 73.48 kPa 11.67 kPa

MENSOLA A VALLE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
н	Altozza coziono (cm):

Н Altezza sezione (cm);

Xprogr.	Fx	Fy	М	Н	
30.0	 -7.9	-17.85	-2.7	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm

Resistenza a taglio conglomerato Vcd (kN); Resistenza a taglio piegati (kN); Vcd

Vwd

Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Vsdu Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	7.88	179.28	S	132.57	0.0	7.43

MENSOLA A MONTE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione (cm);

Xprogr.	Fx	Fy	M	H	
60.0	3.08	18.49	-11.69	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vcd	Resistenza a taglio conglomerato Vcd
	5

Resistenza a taglio piegati (kN); Vwd Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Sic. VT Taglio di calcolo (kN); Vsdu

Afi	Afs	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	3.03	 178.7	 S	132.57	0.0	7.17

EQU+M2 [GEO+STR]

(kN);

Coefficiente sismico orizzontale Kh 0.057 Coefficiente sismico verticale Kv 0.0285

CALCOLO SPINTE

Discretizzazione terreno

Qi Quota iniziale strato (cm);

Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	В	Note
210.0	 174.0	18.0	0.0	 16.23	0.0	0.0	0.0	
174.0	138.0	18.0	0.0	16.23	0.0	0.0	0.0	
138.0	102.0	18.0	0.0	16.23	0.0	0.0	0.0	
102.0	80.0	18.0	0.0	16.23	0.0	0.0	0.0	
80.0	66.0	18.0	0.0	17.91	0.0	8.0	0.0	
66.0	30.0	18.0	0.0	17.91	0.0	8.0	0.0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.

Ka Coefficiente di spinta attiva.
Kd Coefficiente di spinta dinamica.
Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.56	0.61	0.06	0.56	0.0	0.06	0.0
0.0	0.53	0.58	0.06	0.53	0.0	0.06	0.0
0.0	0.53	0.58	0.06	0.53	0.0	0.06	0.0

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN); Z(Rpx) Ordinata punto di applicazione risultante spinta (cm);

Z(Rpy) Ordinata punto di applicazione risultante spinta (cm); Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	210.0	174.0	1.7	0.0	189.45	174.0
2	174.0	138.0	3.3	0.0	154.69	138.0
3	138.0	102.0	4.89	0.0	119.11	102.0
4	102.0	80.0	3.78	0.0	90.74	80.0
5	80.0	66.0	0.89	0.0	72.73	66.0
6	66.0	30.0	3.34	0.0	46.78	30.0

CARATTERISTICHE MURO (Peso, Baricentro, Inerzi a)

Py Peso del muro (kN); Px Forza inerziale (kN);

Xp, Yp Coordinate baricentro dei pesi (cm);

Quota	Px	Ру	Xp	Yp	
174.0	0.14	2.38	45.0	192.0	
138.0	0.27	4.77	45.0	174.0	
102.0	0.41	7.15	45.0	156.0	
80.0	0.49	8.61	45.0	145.0	

66.0	0.54	9.53	45.0	138.0
30.0	0.68	11.92	45.0	120.0

Sollecitazioni sul muro

Quota	Origine ordinata minima del muro (cm).
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione di calcolo (cm);

Quota	Fx	Fy	M	Н	
174.0	 1.84	2.38	0.29	30.0	
138.0	5.27	4.77	1.52	30.0	
102.0	10.3	7.15	4.28	30.0	
80.0	14.16	8.61	6.97	30.0	
66.0	15.11	9.53	9.01	30.0	
30.0	18.59	11.92	15.04	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afv	Area dei ferri lato valle.
Afm	Area dei ferri lato monte.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vcd	Resistenza a taglio conglomerato Vcd (kN);
Vwd	Resistenza a taglio piegati (kN);
Sic. VT	Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).
Vsdu	Taglio di calcolo (kN);

Afv	Afm	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
 12Ø14 (18.47)	 12Ø14 (18.47)	2.34	.—————— 178.62	 S	 132.57	- 0.0	72.12
12Ø14 (18.47)	12Ø14 (18.47)	4.76	178.91	S	132.57	0.0	25.14
12Ø14 (18.47)	12Ø14 (18.47)	7.17	179.2	S	132.57	0.0	12.87
12Ø14 (18.47)	12Ø14 (18.47)	8.63	179.37	S	132.57	0.0	9.36
12Ø14 (18.47)	12Ø14 (18.47)	9.62	179.49	S	132.57	0.0	8.77
12Ø14 (18.47)	12Ø14 (18.47)	11.84	179.75	S	132.57	0.0	7.13

VERIFICHE GLOBALI

Piano di rottura passante per (xr1,yr1) = (140.0/0.0)Piano di rottura passante per (xr2,yr2) = (140.0/210.0)Centro di rotazione (xr0,yr0) = (0.0/0.0)

Discretizzazione terreno

Qi Of	Quota iniziale strato (cm); Quota finale strato
Gamma	Peso unità di volume (KN/m³);
Eps	Inclinazione dello strato. (°);
Fi	Angolo di resistenza a taglio (°);
Delta	Angolo attrito terra muro;
С	Coesione (kPa);
ß	Angolo perpendicolare al paramento lato monte (°);
Note	Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	В	Note
210.0	 174.0	18.0	0.0	16.23	16.23	0.0	0.0	
174.0	138.0	18.0	0.0	16.23	16.23	0.0	0.0	
138.0	102.0	18.0	0.0	16.23	16.23	0.0	0.0	
102.0	80.0	18.0	0.0	16.23	16.23	0.0	0.0	
80.0	66.0	18.0	0.0	17.91	17.91	8.0	0.0	
66.0	30.0	18.0	0.0	17.91	17.91	8.0	0.0	
30.0	0.0	18.0	0.0	17.91	0.0	8.0	0.0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.
 Ka Coefficiente di spinta attiva.
 Kd Coefficiente di spinta dinamica.
 Dk Coefficiente di incremento dinamico.

Kax, Kay Componenti secondo x e y del coefficiente di spinta attiva.

Dkx, Dky Componenti secondo x e y del coefficiente di incremento dinamico.

μ	Ka	Kd	Dk	Kax	Kay	Dkx	Dky
16.23	 0.49	0.55	0.07	0.47	0.14	0.07	0.02
16.23	0.49	0.55	0.07	0.47	0.14	0.07	0.02
16.23	0.49	0.55	0.07	0.47	0.14	0.07	0.02
16.23	0.49	0.55	0.07	0.47	0.14	0.07	0.02
17.91	0.46	0.52	0.07	0.44	0.14	0.07	0.02
17.91	0.46	0.52	0.07	0.44	0.14	0.07	0.02
0.0	0.53	0.58	0.06	0.53	0.0	0.06	0.0

Spinte risultanti e punto di applicazione

Qi Quota inizio strato. Qf Quota inizio strato.

Rpx, Rpy Componenti della spinta nella zona j-esima (kN);
Z(Rpx) Ordinata punto di applicazione risultante spinta (cm);
Z(Rpy) Ordinata punto di applicazione risultante spinta (cm);

	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)
1	210.0	 174.0	 1.47	0.38	189.52	 189.17
2	174.0	138.0	2.84	0.73	154.72	154.54
3	138.0	102.0	4.22	1.08	119.14	119.02
4	102.0	80.0	3.26	0.84	90.74	90.71
5	80.0	66.0	0.72	0.09	72.72	72.52
6	66.0	30.0	2.73	0.46	46.76	45.82
7	30.0	0.0	3.01	1.35	14.22	15.0

SPINTE IN FONDAZIONE

Discretizzazione terreno

Qi Quota iniziale strato (cm); Qf Quota finale strato

Gamma Peso unità di volume (KN/m³); Eps Inclinazione dello strato. (°); Fi Angolo di resistenza a taglio (°); Delta Angolo attrito terra muro;

c Coesione (kPa);

ß Angolo perpendicolare al paramento lato monte (°); Note Nelle note viene riportata la presenza della falda

Qi	Qf	Gamma	Eps	Fi	Delta	С	ß	Note
30.0	0.0	18.0	 180.0	 17.91	0.0	8.0	180.0	

Coefficienti di spinta ed inclinazioni

μ Angolo di direzione della spinta.Kp Coefficiente di resistenza passiva.

Kpx, Kpy Componenti secondo x e y del coefficiente di resistenza passiva.

μ	Кр	Kpx	Кру	
180.0	1.8	-1.8	0.0	

Spinte risultanti e punto di applicazione

Qi Quota inizio strato.

							wessa in s
	Qf Rpx, Rpy Z(Rpx) Z(Rpy)	Quota inizio strato Componenti della Ordinata punto di Ordinata punto di	spinta nella zo applicazione i	risultante spi	nta (cm);		
	Qi	Qf	Rpx	Rpy	z(Rpx)	z(Rpy)	
1	30.0	0.0	-7.9	0.0	14.08	0.0	
Sollecit	azioni total	i					
	Fx Fy M	Forza in direzione Forza in direzione Momento (kNm);					
			Fx		Fy		М
Spinta to Peso mu Peso fon Sovracca Terr. fon Spinte fo	iro idazione arico	0 0 0 1	25 68 53 18 48 7.9		4.92 11.92 9.27 3.2 25.92 0.0 55.23		10.51 -4.55 -6.41 -2.82 -24.15 -1.11 -28.53
	o stabilizzante o ribaltante	e -47.86 k 19.33 k					
Verifica	alla traslaz	ione					
Sommat Coefficie Adesione Angolo p Forze no Forze pa Resisten Coeff. s	piano di scorri ormali al piano orall. al piano za terreno	mento o di scorrimento di scorrimento slazione Csd		21.12 55.23 0.32 5.6 -360.0 55.23 21.12 33.59	kPa kPa kN kN kN		
Verifica	al ribaltam	ento					
Momento Coeff. s		e altamento Csv baltamento Csv>	1	-47.86 19.33 2.48	kNm		
Carico I	imite vertica	ale VESIC					
Somma Somma Larghez Lunghez Eccentri Peso un Angolo Coesion Terreno	icità su B iità di volume di resistenza	zione y (Fy) e al taglio one		17.91 8.0 30.0	kN kNm cm cm kN/m³ o kPa cm KN/m³		
Fattori d	li forma			1.0			

1.0

SC	1.0
sq	1.0
Inclinazione carichi	
iq	0.7
ic	0.63
ig	0.59
Fattori di profondità	
dq	1.09
dc	1.12
dg	1.0
Carico limite verticale (Qlim)	120.27 kN
Fattore sicurezza (Csq=Qlim/Fy)	2.18

Carico limite verificato Csq>1

Tensioni sul terreno

Ascissa centro sollecitazione 51.65 cm
Larghezza della fondazione 140.0 cm x = 0.0 cm 70.47 kPa x = 140.0 cm 8.43 kPa

MENSOLA A VALLE

Xprogr.	Ascissa progressiva (cm);
Fx	Forza in direzione x (kN);
Fy	Forza in direzione y (kN);
M	Momento (kNm);
Н	Altezza sezione (cm);

Xprogr.	Fx	Fy	M	Н	
30.0	 -7.9	-17.16	-2.6	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afi	Area dei ferri inferiori.
Afs	Area dei ferri superiori.
Nu	Sforzo normale ultimo (kN);
Mu	Momento flettente ultimo (kNm);
Vcd	Resistenza a taglio conglomerato Vcd (kN);
Vwd	Resistenza a taglio piegati (kN);
o: \ \	

Sic. VT Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1).

Vsdu Taglio di calcolo (kN);

Afi	Afs	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	7.88	179.28	S	132.57	0.0	7.73

MENSOLA A MONTE

Xprogr. Fx Fy M H	Ascissa progressiva (cm); Forza in direzione x (kN); Forza in direzione y (kN); Momento (kNm); Altezza sezione (cm);
Н	Altezza sezione (cm);

Xprogr.	Fx	Fy	М	Н	
 60.0	3.01	18.41	-11.24	30.0	

Armature - Verifiche sezioni (S.L.U.)

Afi Area dei ferri inferiori.

Area dei ferri superiori. Sforzo normale ultimo (kN); Momento flettente ultimo (kNm); Resistenza a taglio conglomerato Vcd (kN); Afs Nu Mu

Vcd

Vwd

Resistenza a taglio congiomerato vcd (kN); Resistenza a taglio piegati (kN); Misura Sicurezza Taglio (Vcd+Vwd)/Vsdu (Verificato se >=1). Taglio di calcolo (kN);

Sic. VT Vsdu

Afi	Afs	Nu	Mu	Ver.	Vcd	Vwd	Sic. VT
12Ø14 (18.47)	12Ø14 (18.47)	 3.03	 178.7	S	132.57	0.0	7.2

VERIFICA DI STABILITA' GLOBALE

Analisi di stabilità dei pendii con: BISHOP (1955)

Normativa	NTC 2008
Numero di strati	3.0
Numero dei conci	10.0
Grado di sicurezza ritenuto accettabile	1.1
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	4.11 m
Ordinata vertice sinistro inferiore yi	7.33 m
Ascissa vertice destro superiore xs	6.49 m
Ordinata vertice destro superiore ys	9.7 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0
Coefficiente azione sismica orizzontale	0.057
Coefficiente azione sismica verticale	0.0285

Vertici profilo

Nr	X	у
	(m)	(m)
1	2.0	5.3
2	5.0	5.3
3	5.3	5.3
4	5.6	7.1
5	5.6	7.1
6	7.6	7.1
7	10.3	7.1

Vertici strato1

N	X	у
	(m)	(m)
1	2.0	5.3
2	5.0	5.3
3	5.3	5.3
4	5.6	5.8
5	10.3	5.8

Vertici strato2

N	X (m)	y (m)
1	2.0	4.0
2	5.6	4.0
3	10.3	4.0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1.25
Coesione efficace	1.25
Coesione non drenata	1.4
Riduzione parametri geotecnici terreno	Si

Stratigrafia

- 0							
Strato	Coesione	Coesione non	Angolo	Peso unità di	Peso saturo	Litologia	
	(kg/cm²)	drenata	resistenza al	volume	(Kg/m^3)		
		(kg/cm²)	taglio	(Kg/m^3)			
			(°)				
1	0		20	1835.489	1835.489		
2	0.102		22	1835.489	1835.489		
3	0.102		23	1835.489	1835.489		

Carichi distribuiti

N°	xi (m)	yi (m)	xf (m)	yf (m)	Carico esterno (kg/cm²)	
1	5.6	7.1	9.6	7.1	0	

Risultati analisi pendio [A2+M2+R2]

	=======================================
Fs minimo individuato	1.68
Ascissa centro superficie	5.3 m
Ordinata centro superficie	8.27 m
Raggio superficie	3.55 m

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

xc = 5.30 yc = 8.274 Rc = 3.552 Fs=1.683

Nr.	B m	Alfa (°)	Li m	Wi (Kg)	Kh•Wi (Kg)	Kv•Wi (Kg)	c (kg/cm²)	Fi (°)	Ui (Kg)	N'i (Kg)	Ti (Kg)
1	0.53	-28.3	0.6	152.75	8.71	4.35	0.08	17.9	0.0	368.8	362.5
2	0.53	-18.9	0.56	376.98	21.49	10.74	0.08	17.9	0.0	526.3	372.6
3	0.53	-10.1	0.54	509.71	29.05	14.53	0.08	17.9	0.0	583.9	373.0
4	0.65	-0.4	0.65	695.14	39.62	19.81	0.08	17.9	0.0	698.6	451.5
5	0.4	8.1	0.41	1740.6	99.21	49.61	0.08	17.9	0.0	1683.7	521.6
6	0.53	15.9	0.55	2181.3	124.33	62.17	0.08	17.9	0.0	2078.3	666.2
7	0.53	25.1	0.58 1	1989.82	113.42	56.71	0.08	17.9	0.0	1893.9	647.2
8	0.53	35.0	0.65 1	1693.82	96.55	48.27	0.08	17.9	0.0	1629.1	626.4
9	0.53	46.4	0.77 1	1254.86	71.53	35.76	0.0	16.2	0.0	1540.4	266.5
10	0.53	61.7	1.12	566.01	32.26	16.13	0.0	16.2	0.0	903.0	156.2